Whenever we suddenly encounter something that frightens or startles us, our body has a tendency to "jump" in response. Over the past decade, a considerable amount of evidence has been gathered to suggest that, on a very subtle and unconscious level, our body’s autonomic nervous system may also "jump" in response to frightening or startling stimuli. However, it does so even before our body encounters such stimuli. This evidence comes from various experiments designed to explore the possible physiological signatures of a precognition-related experience that has come to be known as presentiment or pre-stimulus response.
The first presentiment studies were conducted by Dr. Dean Radin (1997, 2004) of the
A growing number of recent studies are suggesting that other parts of the body may also show a presentiment response, including the heart (McCraty et al., 2004a) and the brain (Bierman & Scholte, 2002; Bierman & van Ditzhuijzen, 2006; Hinterberger et al., 2006; McCraty et al., 2004b). The results of a study by Radin and Eva Lobach (2007) of the
In Radin and Lobach’s study, slow brain wave activity was recorded from the occipital region (associated with vision) at the back of their subjects’ brains via electroencephalograph (EEG) while the subjects were visually stimulated at random times. The stimulation came in the form of a light that was quickly flashed toward the subject's eyes through a pair of opaque glasses fitted with light-emitting diodes (LEDs). To start each individual test trial, the subject clicked a computer mouse that they held in their hands. After 4 seconds (which constituted the presentiment period) had passed, the computer sampled an electronic random number generator to determine whether it should activate the LEDs in the subject’s glasses and produce a flash, or whether it should keep them dark until the end of the trial (indicated by a computer tone), then the process was repeated for the next trial. The probability of the subject seeing the LEDs flash or not was exactly 50/50 for each trial. The EEG results indicated that during the presentiment period, female subjects had shown a slightly higher level of brain wave activity on the trials where the LEDs were flashed than on the trials where the LEDs did not flash to a statistically significant degree (odds of about 142 to 1 against chance alone). This higher level of brain activity during the flash trials suggests a kind of anticipation or “readying” response to the impending light flash, akin to presentiment. Interestingly, male subjects had shown the opposite effect, in that their level of brain wave activity was slightly lower on flash trials than on no flash trials. This latter finding was not statistically significant, however. Radin and Lobach also found that the peak level of brain wave activity for the female subjects occurred approximately one second before the light flash.
Radin and Lobach’s findings are consistent with other brain studies related to presentiment and precognition. Bierman and Scholte (2002) had monitored their subjects’ brain activity using magnetic resonance imaging (MRI) while the subjects randomly viewed affective and neutral pictures. They found that higher levels of brain activity were present in the occipital region just before the subjects viewed affective pictures than when they viewed neutral pictures, a finding consistent with studies on visual processing of affective and neutral pictures (e.g., Lang et al., 1998). McDonough et al. (2002) conducted a series of studies in which they disguised a precognition test in a gambling task. Four playing cards were shown on a computer screen to the subject, and the subject selected one of them. A moment later, the computer randomly chose one of the cards to be the precognition target. EEG monitoring of the subjects during this task revealed higher brain wave activity in subjects when they selected the target card than when they didn’t select it. At least three other EEG studies relating to presentiment have observed similar effects (Bierman & van Ditzhuijzen, 2006; Hinterberger et al., 2006; McCraty et al., 2004b).
A lot of questions still remain about presentiment and precognition as a whole, but these studies strongly hint that there may be a brain correlate of such phenomena, and this is one thing that may eventually help establish their existence, apart from the statistical evidence for them.
- Bryan Williams
References:
Bierman, D. J., & Radin,
Bierman, D. J., & Radin,
Bierman, D. J., & Scholte, H. S. (2002). Anomalous anticipatory brain activation preceding exposure of emotional and neutral pictures. Proceedings of Presented Papers: The Parapsychological Association 45th Annual Convention (pp. 25 – 36).
Bierman, D. J., & van Ditzhuijzen, J. (2006). Anomalous slow cortical components in a slot-machine task. Proceedings of Presented Papers: The Parapsychological Association 49th Annual Convention (pp. 5 – 19).
Hinterberger, T., Studer, P., Jäger, M., Haverty-Stacke, C., & Walach, H. (2006). The slide-show presentiment effect discovered in brain electrical activity. Proceedings of Presented Papers: The Parapsychological Association 49th Annual Convention (pp. 57 – 70).
Lang, P. J., Bradley, M. M., Fitzsimmons, J. R., Cuthbert, B. N., Scott, J. D., Moulder, B., & Nangia, V. (1998). Emotional arousal and activation of the visual cortex: An fMRI analysis. Psychophysiology 35(2), March. pp. 199 – 210.
May, E. C., Paulinyi, T., & Vassy, Z. (2005). Anomalous anticipatory skin conductance response to acoustic stimuli: Experimental results and speculation about a mechanism. Journal of Alternative and Complementary Medicine 11(4), August. pp. 695 – 702.
McCraty, R., Atkinson, M., & Bradley, R. T. (2004a). Electrophysiological evidence of intuition: Part 1. The surprising role of the heart. Journal of Alternative and Complementary Medicine 10(1), February. pp. 133 – 143.
McCraty, R., Atkinson, M., & Bradley, R. T. (2004b). Electrophysiological evidence of intuition: Part 2. A system-wide process? Journal of Alternative and Complementary Medicine 10(2), April. pp. 325 – 336.
McDonough, B. E., Don, N. S., & Warren, C. A. (2002). Differential event-related potentials to targets and decoys in a guessing task. Journal of Scientific Exploration 16(2), Summer. pp. 187 – 206.
Radin,
Radin,
Radin, D., & Lobach, E. (2007). Toward understanding the placebo effect: Investigating a possible retrocausal factor. Journal of Alternative and Complementary Medicine 13(7), September. pp. 733 – 739.
Spottiswoode, S. J. P., & May, E. C. (2003). Skin conductance prestimulus response: Analyses, artifacts, and a pilot study. Journal of Scientific Exploration 17(4), Winter. pp. 617 – 641.
8 comments:
Good Job! :)
It was very interesting for me to read this article. Thanx for it. I like such topics and anything that is connected to this matter. I would like to read more on that blog soon.
why are there important papers only offered as conference presentations? is it because the research was actually too shoddy to pass peer review? enough years have passed for them to get into print, so why do they fail to make it? this suggests that the research is actually unacceptable even to the experts in the field, and even if some of the research does make it (or fake it) into print.
It is nice that these studies are being conducted. The advancement of science is grounded on pure research, and I think all of us should do our part to help in.
More of these articles should be posted and a number of audience should discover the reward of reading these things--histories in the making! :)
Post a Comment